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ABSTRACT AND SUMMARY

Hanson (J. Acoust. Soc. Am., 54, 6, 1973) has modeled turbomachinery

noise in a free-field as a sequence of pulsed-dipole acoustic sources with

randomly modulated amplitudes and arrival times. This approach produced a

far-field noise spectra with a broad-band background in addition to the

usual discrete noise component. A systematic method for calculating the

internal and external acoustical fields of aircraft turbofan engines has

been developed by Zorumski (NASA TR R-419). This work shows that the duct

acoustic problem can be reduced to a linear matrix equation WA = Q where

A and Q are vectors of modal amplitudes and W is a square transmission/

reflection matrix. In this paper the methodologies of Hanson and Zorumski

are combined to yield a unified analysis of ducted turbomachinery noise.

The essential features of Hanson's analysis are unchanged by the addition

of duct acoustic effects. It is shown that the far-field broad-band and

discrete noise spectral components can be expressed in terms of modal cross-

spectral matrices and directivity vectors which are derivable from the duct

analysis.



INTRODUCTION

Aircraft turbomachinery noise has been analyzed by various authors

with the aid of either of two possible simplifying assumptions. The noise

originates inside the engine at the rotating and fixed blades of the turbo-

machinery stages, consequently it is possible to study the ducted sound

field assuming that the engine duct is infinitely long. This was the main

viewpoint used in the classic analysis of "spinning mode" generation by

Tyler and Sofin (ref. 1). For these authors, the radiation of the noise

was considered as an independent problem. Using an alternate simplifying

viewpoint, Lowson (ref. 2) argued that the main features of radiation

from engine fans could be found by ignoring the duct effects entirely and

considering the noise sources to be in the free-field. Both of these views

are valid up to a point and may be used when only qualitative effects are

needed. It should be recognized, however, that such drastic simplifications

do not make sense in some situations. For example, if one is studying the

effect of duct acoustic treatment on fan noise, it would hardly be sensible

to neglect the duct; or, if it is desired to predict noise on the ground

during an aircraft flyover, it is not sensible to ignore the radiation from

the engine inlet. Recently Hanson (ref. 3) has used the no-duct assumption

to great advantage to develop his "Unified Analysis of Fan Stator Noise."

Hanson assumed that the essential features of his analysis would not be

changed by the addition of duct effects and it will be shown in the present

paper that his assumption is correct. In order to do this we will employ

the results developed by Zorumski (ref. 4) for the radiated field due to

ducted noise sources. Thus, the purpose of this paper is to combine the

2



analyses by Hanson and Zorumski to develop a unified analysis of ducted

turbomachinery noise.
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SYMBOLS

a random variable with unit mean

A mode amplitude

b random variable with zero mean

B number of rotor blades

c ambient speed of sound

D ( ), D ( ) mode directivity functions

E { expected value of {)

f (t) force pulse

F (w) Fourier transform of force pulse

G power spectral density

I intensity

k wave number, w/c

m circumferential mode number

n harmonic number

p acoustic pressure

Q source mode amplitude



r, 0, z cylindrical coordinates

r, 6, 1 spherical coordinates

R mode reflection coefficient

s stator vane number

t time

T mode transmission coefficient, also rotor period 2r/ 2

V number of stator vanes

W wave coefficient

x, y, z rectangular coordinates

Y broadband noise directivity function

Z harmonic noise directivity function

6 (W) Dirac delta function

ambient density

standard deviation

radial mode function
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radian frequency

rotor speed

row matrix

column matrix

square matrix



REVIEW OF HANSON'S ANALYSIS

Hanson (ref. 3) considered the noise radiated from an aircraft

engine fan stage due to the viscous wakes from the upstream rotor. Each

stator vane source was modeled as a simple dipole (concentrated force on

the fluid) which "pulsed" as each viscous wake from the rotor passed over

the vane. The stator noise source model was therefore a circular dipole

array, such as in figure 1, in the free-field. A typical pulse from one

of these dipoles is f(t) and the transform of this pulse is F(w). The

pressure spectrum due to a single typical pulse at time t=o on stator

vane s is

p(r ;)=- i ks (e ikr s

4Tr 2
s (1)

Hanson recognized that the viscous wakes from the rotor blades vary in a

random fashion and modeled the actual pulses on the stator vanes as having

random amplitudes, with unit mean and standard deviation 0 a- The time

of the pulse occurrence was modeled as a Gaussian process with zero mean and

standard deviation ab . Figure 2 shows a typical sequence of pulses with

this random amplitude and arrival time property. With this model, the

intensity per unit bandwidth dI at the observer position 0 in the far
de

field was found to be
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2 2  2  - (  ] )

dI B 'w2 F (W) ( + 1 - e b V IF, b)
dw 872 3  2

broadband term

+ BO E e(WT-b) 2 (w-nB&) Z (,;w) (2)

harmonic terms

In equation(2), B is the number of rotor blades, V is the number of

stator vanes, Q is the rotor angular speed, and T = 27/0. The term

containing U in equation (2) is the broadband noise due to pulse ampli-
a 2

tude modulation (PAM)and the term remaining 1 - e-(a -b is the broadband

noise due to pulse position modulation (PPM). Note that PAM generates broadband

noise without changing the harmonic noise, but that PPM decreases the har-

monic noise by the factor e- ( U b 2

In the following sections, we will develop a formula, analogous to

equation (1),for the far-field pressure due to a dipole pulse in a finite

length duct and then use this result to extend Hanson's analysis to include

duct effects. It will be shown that the essential results of the unified

analysis are unchanged by the addition of these duct effects.
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DIPOLE IN INFINITE DUCT

In order to develop a formula for the far-field pressure due

to a dipole pulse, we first consider the sound field due to a dipole in

an infinite duct. In this paper, only hueristic arguments will be

presented. The analysis of reference 4 is being followed here, so that

the reader who is interested in analytical details may refer to that

work.

Consider the infinite duct which is formed by an imaginary ex-

tension of the finite duct as shown in figure 3. The planes z and z
1 2

denote ends of a duct section, and a single dipole is located at &-0,

r=rs in the source plane zs . In axisymmetric ducts, it is always con-

venient to develop the pressure spectrum in a Fourier series

p (r,,z;w)= k m (rzw)

and to treat each term in this series independently. Without bothering

with a lengthy derivation, it is assumed that the sound field at zI is

made up of circular duct modes traveling away from the source to the

right. These modes, which are denoted by ImP (r) are known to be pro-

portioned to Bessel functions of the first kind of order m. The subscript

m is the radial mode index. At zI then, the mth pressure harmonic in

equation (3) is
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pm (r,zs k I( (kr) (4)
C m=l

In equation (4) + is the source mode amplitudes at z1 and the positive

superscript is used to denote the positive direction of travel. In practice

the infinite series in equation (4) is always truncated so that it may be

replaced by the matrix formula

p (r,z ;) = m (kr)j k3- F (0w) (5)Sr c

The inner product of the row matrix and the column matrix in equation (5)

replaces the summation in equation (4).

Equation (5) gives the pressure at z1 due to a dipole if the duct

is infinite. After considering some elementary transmission and reflection

concepts, we will show that this information can be used to predict the

pressure in a finite duct.
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TRANSMISSION AND REFLECTION

It is known that the propogation of waves in uniform ducts is

ik zdescribed by their axial wave number kzm through the function ei zmz

that is, the amplitude of a mode at z is related to the amplitude of

that same mode (in a uniform duct) at zl by the equation

+2 = ik (z -z ) A+1 (6)
A e zmp 1 2 A

In general k is a complex number so that equation (6) describes the

phase shift and the attenuation of the wave between planes z and z
1 2

The attenuation, an exponential decay of the amplitude, is depicted

graphically in figure 4 which shows the relative amplitudes of the waves

at planes 1 and 2. All transmission effects in ducts, both uniform and

nonuniform, are described by the matrix equation

IA+ 2  T+2+1I A+1 (7)
mij mj my

In the simple case of a uniform duct, the transmission matrix T+ 2 +1 is

a diagonal matrix whose non-zero elements are given by the exponentia

factors in equation (6). In nonuniform ducts, a more general expression
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must be derived for the transmission matrix, however its basic form will

be as shown here. Of course, a similar equation is possible for waves

traveling from right to left in the duct.

When acoustic modes travel to the end of a finite duct, there

is partial radiation of the sound to the far-field and partial reflection

of the sound as waves traveling backward from the duct opening. This

reflection process is shown graphically in figure 5 where a positive

+2 2moving wave A is reflected as a set of negatively moving waves Am.

The analysis of this radiation and reflection process is complex and cannot

be treated here. A general solution for radiation from a flanged annular

duct is given in reference 5 and the problem of radiation from an unflanged

duct is treated in reference 6. Here, we only note that the solution to the

radiation problem also yields the reflection equation which must take the

form

=2-2+21 +2 (8)
mI MP\ m"

Considering the simultaneous effects of sources, transmission, and reflections

gives the following equation

[I 0 -R 0 A+ l)
1 +2 31 -o

0 0 1 I-T A pcO--2
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Equation (9) will be denoted by

[W] I = k3  (I (10)

therefore, the solution for the mode amplitudes is

IA = k31 c (w) L1
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RADIATION FROM DUCTED DIPOLES

The solution for the sound field inside of the duct has been

developed in terms of the mode amplitudes at the duct ends. These mode

amplitudes also give the radiated acoustic field as shown in reference 5

and 6. Here, each mode which strikes the duct end is assumed to have a

known radiation directivity function D m (42) which has been determined

from the solution to the radiation problem. Thus, the far-field pressure

at the observer point 0 due to a single mode at the end of the duct is

Pm(r,;W) = pc 2 e ikr2 +2 +2
e D+2 A+2

W kr 2  m 2 mI (12)

and the pressure due to all modes at the end of the duct can be found, by

superposition, to be

(r2  ) = P 2  kr2 LDm( 2 )Am (13
W kr2 m=-e

Substituting the solution for the mode amplitudes, equation (11) into

equation (13) gives

p(r,e,¢,w) = kr2 () eikr2  m L ( eim e
2 2 2 (14

r2  m=-

14



where

L (AD)J LD J, J ] - (15

Equation (14), the far-field pressure spectrum due to a dipole in a duct,

replaces equation (1) when there is an array of dipoles in a duct with ran-

dom amplitude and pulsing times. Although this expression is more complex

than the free-field formula, Hanson's analysis can still be carried through

with no essential changes.
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RESULTS OF UNIFIED ANALYSIS

Essentially, all of Hanson's results are preserved except that the

expressions for the directivity effects are more complex. In the ex-

pression for the far-field broadband intensity, Hanson's directivity function

is

Y () = sin 2 cos 2 +(1/2)cos 2 sin 2 (16)

provided there are more than two stator vanes. The angle B in equation

(16) is the mean inflow angle to the stator which determines the orientation

of the dipole with respect to the plane of the stator vanes. The analysis

with duct effects shows that the broadband directivity for the ducted

stator is

oo

Y((:;w) (42 = (470L[D (cD)] Q D}[ J] { (17)

that is, the broadband directivity is axisymmetric but depends on the

16



directivities of the cylindrical mode orders m and radial mode orders P or

v as well as the modal source amplitudes Q which the unit dipole would

generate in an infinite duct. The square matrix in equation (17) is

the modal cross spectrum for a unit dipole in an infinite duct. Attempts

have been made by Bolleter and Crocker (ref. 7) and by Harel and Perulli

(ref. 8) to measure this cross spectrum for general sources. These

measurement attempts have been partially successful. The present analysis

therefore provides a link between the results of nonreflecting duct

measurements, which can be made in the laboratory, and the prediction

of far-field radiated noise with a finite length duct.

Hanson also found a fairly simple expression for the directivity

of the harmonic noise from a free-field dipole array. This was

z (4,e;n) - x s (8,e,p,v) + 2S (B,e,,v) (18)

where

17sini sin cos - cos B sin 4 sin - 2s) 9, (19)
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s = nBM sin cos ( - - - 27nB s (20)

and M is the rotational Mach number at the dipole radius. Note that the

directivity of the harmonic noise is not axisymmetric. The directivity

of the harmonic noise from the ducted dipole array depends on the properties

of the Tyler-Sofrin spinning modes. It is shown in the appendix that

this expression is

oO oo
Z($, e;w)= (40)2 k [ mu (() m QQ*, () ei( ' - k)ve

k= -00 k = - o (21)

where m = nB - kV, (22a)

and m'= nB - k'V (22b)

The harmonic directivity depends on only the selected mode orders m=nB-kV

as predicted by Tyler and Sofrin; however it is not axisymmetric because of

the factor exp [i (kt-k)VO ] which corresponds to Hanson's result for the

free-field array. If the intensity is averaged over the azimuth angle 0,

18



the double sum in the directivity expression (21) is reduced to a

single-sum.
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CONCLUDING REMARKS

A unified analysis has been formally carried out for the radiated

noise field of a circular array of pulsing dipoles in a finite length

duct. The result shows that there is no qualitative difference in the

predicted broadband and harmonic spectra between a free-field array

and a ducted array; however, the magnitude and directivity of the radiated

field is changed by the presence of the duct and a quantitative computational

approach has been outlined which will predict the duct effects. The

analysis has also shown that measured modal cross spectra from sources in

a nonreflecting duct may be used to predict the noise radiated from those

same sources in a finite duct. The analysis also shows again that the

harmonic noise is made up of the familiar Tyler-Sofrin "spinning modes" of

order m=nB-kV.
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APPENDIX

Statistical Analysis

In the text a relation is presented (eqs. (14) and (15)) for the

far-field pressure spectrum (complex pressure) due to a dipole pulse at

position Os 0 in an acoustically lined duct (fig. 6). If the pulse

occurs at time t = 0, the far-field pressure is

F5(rec)/ ,j DicL([w,] e( w(0 (A-1)

However, if the pulse occurs at an arbitrary time t = to the pressure

transform is

Now consider the complex pressure Psn(r,O,q,w)produced in the

th thfar-field due to the n- pulse on the s-- vane. The amplitude of

this pulse will be written as asn (w)I where asn a random

variable with unit mean, that is

(A-2)

for all values of s and n. Therefore, as discussed by Hanson (ref. 3),

IF(w)l is the mean pulse shape and the random variable a accounts
sn

for the pulse amplitude modulations. The reader is cautioned that Hanson

uses the subscript m in reference 3 as the vane number, whereas, in the

present paper s denotes vane number and m denotes the circumferential
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wave number in the duct analysis. The arrival time t for the th
sn

th
pulse on the s-- vane, as developed by Hanson, is

(L - Z -. -- b" T(A-3)

where V is the number of vanes, B is the number of blades, T = is

the period of rotation, 9 being the rotor angular velocity. The parameter

bsn is a random variable which accounts for the jitter or pulse position

modulations. Here it is assumed that

E bs,~ =o (A-4)

for all values of s and n.

Hence, the mean arrival time for the n-th pulse on the sth vane is

The parameter qs in equations (A-3) and A-5) is defined by

9, = E 1 (A-6)

where the bracket [ i indicates that only the integar part of the

quotient is retained. Substituting equation (A-3) into equation (A-l) gives

24



,.,(Y&,e , () r. 5 i. r_ _

An observer located at a fixed position in the far field will

experience a pressure time-history produced by a sequence of pulses as

shown in figure 2. Thus, a particular sequence of realizations for the

random variables asn and b determine a single realization of thesn sn

random far-field pressure. Equation (A-7) gives the Fourier transform of

a typical far-field pulse Psn(r,O, ,w) which itself is a random variable.

In the following it will be shown that the power spectral density G(r,6,,w)

of the far-field pressure can be determined in terms of statistical averages

performed on the random variables psn(r,e,,m). An expression is then

determined for the acoustical intensity per unit bandwidth.
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First rewrite equation (A-7) as

6sn(era-)=X LY,

o-K (,,S -(csr b5s r) (A-9)

in which

D- (Y'il(41- (e-e 5 0)

An -T

-7

(A-10)

4 _ + I ARG(D.5

Cy A y s
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The power spectral density for the far-field pressure p(r,6,$,t),

consisting of an infinite train of pulses, is given by (ref. 3)

C-1 (LI00 W ktA ) (A-11)

where:

which can immediately be rewritten as follows:

EN(E ( W) x 5 ) j

(A-12)
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Herein it will be assumed that the 2V(2N + 1) random variables

asn and bsn are independent. It then follows that the 2V(2N + 1)

random variables X and Y are uncorrelated. An additionalsn sn

consequence of the assumption of independence is that

where fsn(asn, bsn) is the set of 2V(2N + 1) joint probability density

functions for the a 's and b 's and f (a ) and g sn(b sn) are thesn sn sn sn sn sn
respective individual densities. It is further assumed that these

densities are independent of s and n (vane number and pulse number).

Therefore, the a 's and b sn,s are associated with two classes of

random variables a and b, respectively. The required probability

density functions will be assumed as

- 1/8 (A-14)

28



for all n and s. It is not necessary to specify a density for the

random variable a. However, from equation (A-2), E{a) = 1 and its

standard deviation will be noted at C7. A Gaussian density isa

assumed for the random variable b. As indicated by equations (A-4)

and (A-14) , E{b} = 0 and its standard deviation is 1b'

Continuing the development from eqaution (A-12) the following

well-known result will be useful:

a N - cf-,

_! V Z (A-15)

where VAR{ I denotes the variance of the expression within the

brackets. Since the Xsns are uncorrelated

N V (A-16)
VAR z '-5: V1 ZtL
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where:

VAR X- 
(A-17)

Relations similar to equations (A-15) - (A-17) can also be written for

the Y variables.
sn

Substituting these results (eqs. (A-15) to (A-17)) into equation

(A-12) gives:

30
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With the use of equations (A-13) and (A-14) the various

expected values appearing in equations (A-18) can be easily calculated

(ref. 3) and are

E Ys, = C -S \ ( Cs,)

(A-19)

Substituting equations (A-19) into equation (A-18) gives:

3 1

5r- 4(wCSYI (A-2o)
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In equation (A-20) use has been made of the relation (since the random

variable a has unit mean)

V- -  (A-21)

The power spectral density G(r,O,$,w) (eq. (A-11)) will be

determined by separately evaluating the two terms in equation (A-20),

Thus, let

,41) = ,0,0,@ + z(5 e,0) (A-22)

in which:

ri r

Z ; 7- (A-23)
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(A-24)

It will be shown that Gl(r,O,p,) is a broadband component whereas

G2 (r,O,p,w)is a harmonic (discrete) component.

The double sum in equation (A-23) can be simplified to

S[orrm (bf (A-25)

where the asterick * denotes complex conjugate and

33(A-26)
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and the following relation has been applied:

V

- (A-27)

(forr h 2)
Now by substituting equation (A-25) into equation (A-23) and carrying

out the limit as N + gives

'. (A-28)

which is the broadband component of the far-field spectral density.

In order to determine the discrete component G2 (r,8,4,w) note

that (ref. 3)

'2 ) -C C z Z D,-,\ (W' C1,

N

1L D () i_ T (A-29(

34



Now by using the results that (ref. 3)

N-N

(A-30)

N -7O .N+ I

(A-31)

T = z. (A-32)

-- (ns -v - ( v PoK ne-m-P (A-33)

s- e T FOR rBi YY

(A=34)
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the following result is obtained:

7Y*4  (A-35)

(A- A)Ye
~: -

in which

n =Y YItS - 4<V (A-36)

vy'= n- 'Vy
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and

\jQ4 \QXAJ] (A-37)

It should be observed that G2(r,O, ,) is a discrete spectrum

The radiated intensity per unit bandwidth

L (A-38)

can now be expressed as

'(A-39)
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where

Y(e,0 )= (4 -n)s L Qm [lJbg )
W=---3 (A-o)

(A-41)
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Figure 1.- Circular dipole array.

Figure 2.- Dipole pulse amplitude and position modulation.(t)

Figure 2.- Dipole pulse amplitude and position modulation.
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Figure 3.- Dipole in infinite duct.
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Figure 5.- Reflection from duct end.



Observer

r 2

Dipole / -

z z2

Figure 6.- Radiation from dipole in duct.


